====== Plane Geometry Problems ====== ===== Q.2 ===== [[https://www.geogebra.org/m/edrbbhkv|如图]], $AB=BC=3, CD=4, DE=5, BC \perp CD, CD\perp DE, AB \perp AE, 求AE 的长度。$ &GGB &PP ++++ Solution 1| 过 $B$ 作 $CD$ 的平行线交 $ED$ 延长线与 $F$, 链接 $BE$, 则 $BCDF$ 为矩形。 在直角 $\triangle BFE$ 中,$BF=CD=4, FE=FD+DE=BC+ED=3+5=8$ $\therefore BE^2=BF^2+FE^2=16+64=80$ 在直角 $\triangle ABE$ 中,$AE^2=BE^2-AB^2=80-9=71$ $\therefore AE=\sqrt{71}$ ++++ &GGB &PP ++++ Solution 2| 以 $B$ 为原点,$BC$ 为 $y$ 轴,建立坐标系,令 $\angle ABC$ 为 $\theta$,则有各点坐标: $A(-3\ast\sin(\theta), 3\ast\cos(\theta)), B(0,0), C(0,3), D(4,3), E(4,8)$ $\because AE\perp AB$, 两线斜率乘积为 $-1$ $\therefore \frac{8-3\ast\cos(\theta)}{4+3\ast\sin(\theta)}\ast\frac{3\ast\cos(\theta)}{-3\ast\sin(\theta)}=-1$ $\therefore 24\cos(\theta)-9\cos^2(\theta)=12\sin(\theta)+9\sin^2(\theta)$ $\therefore 8\cos(\theta)-4\sin(\theta)=3$ $AE^2=(8-3\cos(\theta))^2 + (4+3\sin(\theta))^2 =89-6(8\cos(\theta)-4\sin(\theta)) = 89-18=71$ $\therefore AE=\sqrt{71}$ ++++ &MMA ++++ Show/Hide| scene = GeometricScene[{{a, b, c, d, e}, {x}}, {EuclideanDistance[a, b] == EuclideanDistance[b, c] == 3, EuclideanDistance[c, d] == 4, EuclideanDistance[d, e] == 5, EuclideanDistance[e, a] == x, PolygonAngle[{a, b, c, d, e}, a] == 90 Degree, PolygonAngle[{a, b, c, d, e}, c] == 270 Degree, PolygonAngle[{a, b, c, d, e}, d] == 90 Degree}]; (* RandomInstance[scene] *) GeometricSolveValues[scene, x] (* {Sqrt[71]} *) ++++ ---- ===== Q.1 ===== $P$ is a point inside $\square ABCD$. The distances from $P$ to three vertices are 1, 2, and 3, respectively. Find the distance from $P$ to the fourth vertex, and the side length of the square. &GGB &PP ++++ Show/Hide| (1) [[https://www.geogebra.org/m/fy2yr4h7|如图]],过 $P$ 做 $MN // AB$ 交 $AD$ 于 $M$,交 $BC$ 于 $N$,则有:$AM=BN, DM=CN$ $AP^2 - AM^2 = DP^2 - DM^2, BP^2 - BN^2 = CP^2 - CN^2$ $1^2 - AM^2 = DP^2 - DM^2, 2^2 - AM^2 = 3^2 - DM^2$ 两式相减得 $DP^2=6, DP=\sqrt{6}$ (2) [[https://www.geogebra.org/m/fy2yr4h7|如图]], $AP=1, BP=2, CP=3,$ 过 $B$ 做 $BE \perp BP$ 且取 $BE=BP$,连接 $AE, PE$. $\because \angle ABP + \angle CBP = \angle ABP + \angle ABE = 90^{\circ}$ $\therefore \angle CBP = \angle ABE $ 又 $\because CB=AB, PB=EB$ $\therefore \triangle ABE \cong \triangle CBP$ $\therefore AE=CP=3$ 在等腰直角 $\triangle BPE$ 中,$PE=\sqrt{2}PB=2\sqrt{2}$ $\therefore AP^2 + PE^2 = 1 + 8 = AE^2$ $\therefore \angle APE = 90^{\circ}, \angle APB = 90^{\circ} + 45^{\circ} = 135^{\circ}$ $\therefore AB = \sqrt{AP^2 + PB^2 - 2\ast AP\ast BP\ast\cos(135^{\circ})} = \sqrt{5+2\sqrt{2}}$ ++++ &MMA ++++ Show/Hide| g = GeometricScene[ {{a, b, c, d, p}, {x, y}}, {PolygonAngle[{a, b, c, d}, a] == 90 Degree, PolygonAngle[{a, b, c, d}, b] == 90 Degree, PolygonAngle[{a, b, c, d}, c] == 90 Degree, EuclideanDistance[a, b] == EuclideanDistance[b, c], EuclideanDistance[p, a] == 1, EuclideanDistance[p, b] == 2, EuclideanDistance[p, c] == 3, EuclideanDistance[p, d] < Sqrt[2] y, (* p is inside the square*) x == EuclideanDistance[p, d], y == EuclideanDistance[a, b]}, {} ] GeometricSolveValues[g, {x, y}] (* we get: {{Sqrt[6], Sqrt[5 + 2 Sqrt[2]]}} *) Furthermore, you can use ''RandomInstance[g]'' to get a graph of the scene. ++++